一、青岛edi设备生产厂家——青岛鲁东水务为您解答什么是EDI
EDI是英文 Electrodeionization的缩写,中文全称为“连续电去离子技术”,其主要用于替代传统混床技术。超纯水的生产在过去的二十年间,在成本、环境及品质等因素的驱 动下,其供水系统发生了许多变化, 特别值得一提的是,目前存在一个明确的方向,就是减少对离子交换工艺的依赖性,以便尽可能减少化学药品的使用,并提高产水量。有一项重要的事实可以说明该趋势—反渗透作为阴阳床的替代技术正在普及。
反渗透作为有效的脱盐技术,其脱盐率可以达到95~99%。但是,RO对离子的去处效果有一定的限度,一般来说,产水电导率0.5us/cm(2 MOhm-cm)是其脱盐的极限。当产水水质有更高的要求的时候,就需要采用混床或等同技术。EDI能高效去除残余离子和离子态杂质, 尤其当用户产水水质要求高,比如对电阻率(>10 或者16MOhm-cm), 二氧化硅(<10ppb或者<1ppb),钠离子,硼等有严格的要求的时候, EDI技术更体现了其品质的优 越性,且EDI系统的运行成本明显低于与混床,与混床装置及其辅助设备相比,其设备的生命周期总成本占有优势。
EDI技术在大约50年前就出现了,但是大型的商业化直到1986年才真正开始,时至如今EDI制造商已经为全球制造了1000套以上的EDI系统。
图1描述了RO,EDI取代传统离子交换工艺的过程。
二、EDI工作原理
图2所示,混床在运行过程中,其内部的树脂分为饱和区,交换区,新生区。饱和区的树脂已经被离子饱和,不再具有从进水中交换离子的能力;交换区的树脂处于部分饱和状态,离子交换主要在交换区完成;新生区的指树脂尚未发生离子交换。随着混床的运行,饱和区和交换区将逐步向上移动,新生区的空间将减少,直到被穿透。新生区的存在是产水水质的保证,而新生区被穿透的时候,也就意味着混床产水水质将下降,混床需要用化学药品再生。
图2 混床与EDI模块运行状态的比较
EDI在运行过程中,树脂分为交换区和新生区,在运行过程中,虽然树脂不断进行离子交换,但电流连续不断的使树脂再生,从而形成了一种动态平衡;EDI模块内将能始终保持一定空间的新生区;这样EDI内的树脂也就不再需要化学药品的再生,且其产水品质也得到了高品质的保证。
如图3所示EDI由阴/阳离子交换膜,混床树脂,淡/浓水室和阴/阳电极构成。
EDI技术将电渗析和离子交换技术完美的结合在一起。
EDI工作主要有三个过程:
1,淡水进水淡水室后,淡水中的离子与混床树脂发生离子交换,从而从水中脱离;
2,被交换的离子受电性吸引作用,阳离子穿过阳离子交换膜向阴极迁移,阴离子穿过阴离子交换膜向阳极迁移,并进入浓水室从而从淡水中去除。
离子进入浓水室后,由于阳离子无法穿过因离子交换膜,因此其将被截留在浓水室,同样,阴离子无法穿过阳离子交换膜,被截留在浓水室,这样阴阳离子将随浓水流被排出模块;与此同时,由于进水中的离子被不断的去除,那么淡水的纯度将不断的提高,待由模块出来的时候,其纯度可以达到接近理论纯水的水平。
3,水分子在电的作用下被不断的离解为H+和OH-,H+和OH-将分别使得被消耗的阳/阴树脂连续的再生。
过程1和过程3是树脂的消耗和再生的两个相反过程,这两者会在模块内部形成一个动态平衡。
图4,5为EDI系统典型的流程图
图4 带浓水循环的EDI系统
图4中,进水从模块底部进入淡水室,并从顶部出来;浓水从模块底部进入模块,从模块顶部出来,浓水经过浓水循环
泵后,大部分浓水将回流到模块的浓水室中循环,小部分浓水将排放;极水的进水与浓水进水为同一水流,只是分别进入不同的室(极水室和浓水室),并从模块顶部排出。
图5 不带浓水循环的EDI系统
图5中,淡水从模块底部进入淡水室,从顶部出来;浓水从模块顶部进入模块,从模块底部出来;极水的进水与淡水进水为同一水流,只是分别进入不同的室(极水室和浓水室),并从模块顶部排出。
猜您喜欢: